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ABSTRACT

Let gi (i - 1, ... , m) be smooth vector fields on Rd, and let Tn - 1 gi be

their Taylor expansions of order n - I at the origin. The system

;(t) - gi(x(t))ui(t), x(o) - 0 e Rd generates an input-output map

u(s) + x(u,*) whose n-th order Taylor approximation x:n(u,) can be

obtained by computing the n-th Picard iterate for the reduced system

;(t) =  (Tngj)(x(t)) ui(t), x(o) = 0, discarding the terms of order
mI=

> n. For z e Rd, directional error bounds of the form

I Z, x(ut) x (ut) > I (Ctn-P It I I m g (o)u (a) daoIdn 0=

can be given. These estimates improve those supplied by the classical

Taylor's theorem and yield results concerning local non-controllability.
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SIGNIFICANCE AND EXPLANATION

Consider the control system on Ad:

I _~~d x~)= m g(x(t))ou (t), x(o) = O

ii 1

Given a control u, in general there exists no explicit formula to exactly

compute the corresponding trajectory t + x(u,t). -The-prma nt-paper provides

a simple method of constructing approximations, xn(u,t) of x(u,t), which are

linear combinations of integrals of the controls, ui and which can be

explicitly computed. The coefficients of these linear combinations are

obtained from the partial derivatives of the vector fields gi at the origin,

using a Picard iterative procedure.

Here the approximation error is the-vector en (ult) - Xn(ugt) -

x(u,t). New and precise bounds on the length of cn (u,t), as well as on the

nnsize of the projectionsooaf En (U,t) an some special subspacee of R d  are

given. ,
gi The present f ta'can be used for a systematic study of a control

system over a short interval of time, in much the same way as the classical

Taylor expansion is used to study the local properties of differentiable

functions. 3

1 -1
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sumary lies with ME, and not with the author of this report.



ON THE TAYLOR APPROXIMATION OF CONTROL SYSTEMS

Alberto Breman

Consider an autonomous nonlinear system on 0d with control entering linearly:

;(t) f(x(t)) + 7 9ilxlt)) ui(t)
i1 (1.1)

x(o) = 0, t ) 0.

Systems of the form (1.1) were first studied in a paper by Hermes and Haynes (4) and

received continued attention since then. If f and the gi's are smooth vector fields,

then (1.1) yields a smooth input-output map : l ([o,)i 11n) + C([0,s)i R
d
) defined by

*(u)(t) - x(u,t), where x(u,.) is the unique solution of (1.1) corresponding to the

control u. In general there exist no explicit formulas giving the trajectory x(u,.)

directly in terms of the control. It is therefore natural to look for some computable

approximation of the map *. The Taylor expansion of # in terms of Volterra kernels

was considered by Brockett 11]. The local aproximation of a control system of the form

;(t) - . gi(x(t))ui(t) ' x(o) - 0 (1.2)
1i-I

by means of an auxiliary (nilpotent) system is studied in (5]. For analytic systems,

expansions in formal power series are given in [3].

In the present paper we approximate the input-output may * generated by (1.2) with

linear combinations of certain iterated integrals, here called integral monomials. Using

functional analytic techniques, we derive a simple procedure to recursively compute the

coefficients of the Taylor expansion for * in terms of the Taylor coefficients of the

~gils at the origin. No analyticity assumptions are needed. our main concern is a

Istituto di atematica Applicata, Universita di Padova, 35100 ITALY.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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precise estimate of the approximation errors. Since the system (1.2) in linear in u,

these errors are essentially due to the nonlinearity of the vector fields gi, which

depend only on x. We thus obtain bounds which depend not on the size of the control

u(') but only on the norm of a first order approximation to the trajectory x(u,.).

The estimates contained in Theorems I and 2, in sections 5 and 6 respectively, improve

those supplied by the classical Taylor's theorem and are sharp enough to yield results on

oucal non-controllability for the system (1.1). Examples are provided in sections 4 to

6. Some related results recently appeared in [6].

§ 2. Preliminary Abstract Results

Given two Banach spaces E and F, k 0 0, we denote by Lk(E,F) the space of

continuous k-linear mappings A from S B = ExEx...xE (k times) into F, with the
k

operator norm

1A| = sup {lA(v1 , ... , vk)JF; lviii ( 1, i - 1, ... , k.

If O:E + F is a smooth mapping, its k-th Frechet derivative at a point u e r is

Do*(u) e Lk (E,F). It is well known that high-order lerivatives are symmetric

multilinear mappings. D 4(u) is therefore completely determined by assigning its values

on elements of the form v~k]. (v,v,...,v) e 3. We write B for the closed ball

k P

centered at the origin with radius p, and Tn, for the n-th order Taylor expansion of

the map 4 at the origin, i.e.

(T,4)(u) In ID4(o)u [i]J-0 it ll

Given a function * = 0 (u,x) defined on a product space ExF, its partial derivatives

are denoted by aulax. In this case, T$ stands for the n-th order Taylor expansion of

f at (0,0). The Landau order symbols 0 and o will also be used. For the basic

properties of differential calculus in Banach spaces, our general reference is Dieudonne

[2]. The approximation procedure considered in this paper is based on the following

simple result:

-2-



Proposition 1. Let 8,F be sanach spaces, let (u,x) 0 *(u,x) be a Ck map from a

neighborhood of the origin in RxF into F such that 9(0,0) - 0, 3 x0(0.0) - 0, and

let the map u : * F be implicitly defined by 4(u) - *(u,$(u)). if ?,# are C
k

maps such that T n. Tn0 and Tn-l* - T 4n1 for some n, 0 < n ( k, then the n-th

order Taylor expansion at the origin of the map u + Y(ut(u)) coincides with Tn#.

Proof. Since the maps *(-) and Y(.,*(o)) are both Ck, we only need to show that,

under the above hypothesis,

lim I4(u) - T(u,*(u))lul -n - 0. (2.1)
n+0

By 7aylor's theorem, for a suitable constant C and for ux sufficiently close to the

origin one has

1|(U) < Clul, i*(u)l < Clul, 14(u) - *(u)3 < Clu n,

ax T(ux)l 4 C(lul+lxl), I6(u,x) - T(u,x)l < C (lul
n +

1 + xI n+).

These inequalities imply

I(u) - Y(Ue*(U))l < 14(u,#(u)) - Y(u,O(u))I + (u,#(u))

4 c(luwn* +14(u)
n+ l 

) + #3(UC4(u)+(1-)flu))l.(u) - #hu)ldE

< C(l+Cn+l)lul n +1 + C(lul + Clul) * Cluln,

Jwhich proves (2.1).ICorollary 1. If 4, 4 satisfy the assumptions made in Proposition 1, then

lim I #(u,(TnO)(u)) - (Tn)(N) I-lul
n 

- 0. (2.2)

u+O

13 The Taylor Formula

4Most of this paper is concerned with the system (1.2). Notice that, by setting u1  1,

a control system of the form (1.1) is recovered as a special case of (1.2). To simplify

all further discussion, we assume that the vector fields i are C. In the

following, lgj(x)l denotes the euclidean norm of the vector

1 -3-
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i (x) e Rd, while IVgi(x) is the operator norm of the dxd matrix of first order

partial derivatives of gi at x. The set of admissible controls is defined as

U -{u = (u, ... us) e L1([ 0,-)1e)1 ui(t)I 4 1, ± - 1, .... m, t > 0).

The LI norm on the set of controls and the C0  norm on the set of trajectories will be

always used. We write (1.2) in the more compact form

x(t) = G(x(t))u(t) x(o) = 0. (3.1)

G is therefore a C map from Rd  into L(Rm'Rd). Call G(J)(z) its j-th derivative

at z e Rd  and let Gn - TriG. Set E F C(1O,- ), and define the

map 4 : IxF + F by

,(uy)(t) t G(y(s))u(s) do (3.2)

Then 0 - 0" o f', with 0'(u,y)(t) - (u(t), G(y(t)))

and

*"(u,Z)(t) It Z(s)u(s)ds.

' is a substitution operator and 4" is bilinear. Hence 4 is k times

continuously Frechet differentiable, for all k. In particular, 3 4(Uoxo)(t) is the

j-linear map

y [j] + it G(J)(xolB)) y[J/(s) Uo(s) do, (3.3)

o0

u (Uoxo)(t) is the multilinear map

(uy [j ) It G(j)xo(s)) ylj)(s) u(s) do (3.4)

and 3 3j 4 B 0 for i > 1, because the dependence on u is linear. Notice that theu x
input-output map u(,) + x(u,° ) O(u)(-) generated by (1.2), or equivalently by (3.1),

is implicitly defined by the equation *(u) - U(u,#(u)), and that both 4 and ax f

vanish at (0,0). The Taylor expansion of 4 at the origin can therefore by computed

recursively, by means of Proposition 1. We will show that Tn. can always be written as

a finite sum of certain iterated integrals of the control u, here called integral

monomials (integromsials, in short).

Definition. The family M - M(m,d) of integral monomials is the smallest set of mapping@

1) from LI((0,m)i3" ) into 3d with the following properties:
.i -4-
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J) pr every linear A 9 IP + R , the map

I (u~t) + It A-u(*)ds (3.5)0

to in

ii) if U1, ... ' Yk e M and if Bs(Rd) k 
+ L(Risid) is k-linear, then M also contains

the map

8 (u,t) + it Bjt S (us)) ... , ula)ds. (3.6)

Using a canonical identification, we shall regard integral monomiala as multilinear

mappings from L([o,-);Rm ) into C°(tO,-) Id). If p e M is k-linear, we say that v

has order k. Notice that if in (3.6) pi has order vi(i - 1, ..., k), then U has

order I + v I + ... + Vk .  Consider now the approximate system

;(t) - G V(x(t))u(t) , x(O) - 0, (3.7)

recalling our definition : Gv - TVG. The first Picard iterate for (3.2)

P lu,t ) - It G(o)u(s)ds (3.8)
t 0

is an integral monomial of the form (3.5). Moreover, if the n-th Picard iterate Pn can

be written as a finite sums of integral monomials, say

N(n)
Pn(Ut) - I Pi(ut),

j-1

then the same holds for Pn+1" indeed

Pn1 (u,t) -I TV -'i C.(k)(o)(Pn(us))"',u(.)d.
k 0

$ can be reexpanded into a finite sum of integral monomials of the form (3.6), namelyI I
Pn+1 (ut) k - Jt e { 0 G0 (0) (P( 1 )(US) .... , ua(k)(u,))u( , )d, (3.g)

where r - r(k,H(n)) in the set of all mappings o from (1,2,...,k) into

{1....,N(n)}.

4 In practice, the k-th order Taylor expansion Tk at the origin for the input-output

map *su() * x(u,*) generated by (3.1) can be obtained by either of the following

methods:

.1
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I) Compute the k-th Picard iterate for the system

x(t) - Gk- 1 (x(t))u(t) , x(o) - 0 (3.10)

and discard the integral monomials of order ) k.

II) Set x n(u,.) = (Tn*(u)() and recursively derive xn  from xn-1 (n - 1,...,k) by

expanding the map

(u,t) + Jo Gn-_(xni(u,,)) u(s)da (3.11)

into a sum of integral monomials, discarding those which have order n.

Indeed, for n > I set

tn(ux)(t) it G 1 x(s)) u(s)ds (3.12)

and check that the Taylor expansions at (0,0) of tn and f (defined at (3.2)) coincide

up to order n. Let Pn be the n-th Picard iterate for (3.10), regarded as a map

u(-) + Pn(U,-) from LI into Co. Assume that T nn-1 T n1. Then, by setting

k' Pn-l' Proposition 1 yields Tn P = Tn,, provided n ( k. By induction,

Pk I Tk$. Observing that Pk is a finite sum of integromials, to obtain its k-th

order Taylor expansion at the origin one merely discards the terms of order > k. This

justifies I). Now set 4t *n' - T n-1" By Proposition 1 the map

u + fn (u,(T-1$)(u)), otherwise defined at (3.11), has the same n-th order Taylor
n

expansion at the origin as $. Discarding from (3.11) the integral rmonomials of

order > n we thus recover Tn$ from Tn-1f. One obtains T k by repetting the above

procedure for n - 1, ..., k.

§4 Examples

Example 1. The third order Taylor expansion for the scalar system

x(t) I coo x(t)u I(t) + u 2(t), X(o) = 0

is

(T 3 lluM) " ft[U 1l() + u ls~do - 1/2 ft u1(a11 fo" U(aldcr22dal

00 , 2 2.

ft u (Y I (a Wd°2 ' ( a 1o )c - 1/2 Itu( Q aMo2d
1~J~la ) 1 u21022 02 0112 )2 2d 1 •

0

-6-
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If u, is constrained to be identically I we obtain an approximation for the system

;(t) - cos x(t) + u(t), x(O) - 0, namely

x(u,t) t - t-3 + 1/2t u(o)o - 1/2 1 t ( e 2) 2 d Il

ito a1 jo u(o2)dod 01(t
4 ).

Example 2. Consider on 23 the control system

- X(x) + Y(x).u , x(O) - 0. (4.1)

Assume that X(o) - 0 and span f(adVX,Y); v - 0, 1, 2) - R3
.  

Then the map :

s2, 33) + (eXP S1 Y) * (exp s2 1Y,XJ) * (exp s3 [[Y,x],x]) (o) defines a local chart of

a neighborhood of the origin in 2
3 . 

In this chart, the third order Taylor approximation

for (4.1) takes the form

x (ut) - ftu(s)ds + 2 It ( 1o 1 u(o 2 )W )do + O(t 4 )

10 2 o 2 0 1 2

x2(u,t) - jt I oU 2 )%d° 1 d o I 1 )do ) do 0(t 4  (4.2)
2 0 2 2 1 2 (4.2) 2 1

x 3 (ut) " It 101 1o2 Uo )do do2do + 3 It 1 . do 2 do + O(t4
3 0 0 3 3 1 2o0 02 2 1

where the constants kI, k2 , k3  are obtained from the linear relation

klY(o) + k2[y,X](o) + k3[(Y,X],X1(o) - (Y,!V,111(o).

ITo prove (4.2), we need to compute some Taylor coefficients of X and Y in the given

chart. The definition of w implies that Y = (1,0,0), (Y,X](o) - (0,1,0) and

((Y,X), X1(o) - (0,0,1). We thus have

(o - Y*X(o) - [YXl(o) - (0,1,0)

ax
o- ) - 1,1 1(O) - 1Yx],](o) - (0,0,1)

2



2-- (o) - Y(Y*X)(o) = [Y,[Y,X]](O) (kl,k2 ,k3 ).
ass1

One can now multiply the vector field X by a fictitious control u 0 1 and use Theorem

1 to get (4.2).

Remark: It is clear that the truncated Taylor expansions are not invariant un' change

of coordinates. The above example shows how the local Lie algebraic structure the

system can yield a chart in which the expansion takes the simplest possible fe For a

general procedure to construct "canonical" charts, see (5 p. 127].

5 Ertror bounds.

High-order Taylor expansions are the primary tool in the local study of functionals at

points of singularity. If the origin is a stationary point for a map A : E + R, one

classically proves that A attains a local minimum at 0 by showing that for some n > 1

(TnA)(u) - A(o) > C "luln (5.1)

for all u is a neighborhood of the origin. One would hope to use a similiar argument

and prove non-controllahility results concerning the system (1.1). For example, let f(o)

= 0. Then (1.1) is not locally controllable at the origin if, for some nontrivial z* e

ad, T > 0, the functional A(u) - ( z*, x(u,T)> attains a local minimum at u i 0.

Coercivity conditions such as (5.1), however, can seldom be obtained in connection with

control systems. To overcome this difficulty, one needs bounds on the error

E(u) - S(T n)(u) - (u)S which are sharper then the classical bound £(u) 4 Clul n+1

supplied by Taylor's theorem.

Lemma 1. Let x(u,*) be the solution of (1.2) corresponding to the control u. Then

there exists a to > 0 such that, for every continuous map y from [0,t O] into the unit

ba ll 81 C 1d ,

-8-
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Iy(t)- x(u,t) 1 2 sup I IT G(y(s))u(s)ds - y(T)I, 0 ( T t) (5.2)

t for all t e (O,t o ] , u e U.

Proof. Set to  -
"1 , 

with

-m 2 -. sup ({Ii(x)l + IVg 1(x)I, x e a1 , i - 1, ... m).

Then the map 0 defined at (3.2) satisfies
1 *(uy 1 ) - #(uy2)'C[0,t 0 1/21yI - Y2 C[0,to

]

and s(uyl)(t) eB9 ,  for every u e U, t e [0,to] and every continuous maps

yIf Y2 : (0'tel 
+ B I Since x(u,*) Is a fixed point for the may y + *(u,y), the

contraction mapping theorem yields ly - x(u,*)l 4 21y - O(u,y)l, i.e., (5.2).

Lma 2. For each u e U, lot x(u,*) be the aciution of (3.1) and let Yn(u,.) be the

solution of

y(t) - n.l(Y(t))u(t), x(o) - 0. (5.3)

Then there exist C and t0 > 0 such that

lYn(ut) - x(u,t)) < C *t i : m(o)uo)da Ind (5.4)

for all t e (0,to], u e U.

Proof. Choose t 1 > 0 so wall that yn(ut) e B1 for all u e U, t e[0,t 1 ] . lemma 1

implies the existence of a to > 0 such that t 0 t 1  and

lYn(ut) - x(u,t)I C 2 sup { I IT G(y (U,a))uls)ds - yn(u,)I, 04 T -C t) (5,5)

for all t e (0,t0 , u e U. Using (5.3) we have

IYn(U't) - x(ut)I 4 2 sup ( I f'[G(Yn(us)) - Gn(y n(U,8))Iu(s)daS, 0 ( T < t)

C 2 - C1 I.. (5.6)
It •cJo lyn (u'a@n . ')

where the constant C 1 depends only on the size of the n-th derivative of G on B1.

M . sup ( 117r -1 i)(z)!, 1el -,d i I . . . ,
nit) m j:G(o)u()dsI, w(t) - ly (u,t) - G(o)u(s)d., For almost every

-t [O-t, w(t) -- n- 1 (Y n(U,t)) -n-1(0) K• lY n (U-t)- < M(w(t) + n(t)).

i -9-



Since w(o) - 0, Gronwall's lemma yields w(t) 4 C2  t n(s)da, with C2  me 
Mr ° . Using

Holder's inequality we get the estimate

2It ly(u.s) ds -C 2 St [n(r) - C I' n(s)dsndr
0 0 2o0

S° It (2 ())n + - (2C n(s)d ).da) (5.)

i t~ (2,())ndT + (2C )n.t ( It fn(,)ds)trl 4 C3  tn "(T)dr.

with C3 - In~ + (2C2 t)n. Combining (5.6) with (5.7) one has (5.3), with C - C 3.

The above lemmas provide a simple estimate for the error in the Taylor expansion of 4.

Theorem 1. Let x(u,') he the solution of (3.1). Set Gn.1 Tn-'G,

Xn (ut) - (Tn,)(U)(t). Then there exist C, to > 0 such that

ix u.t1 - x(,t) I C it I JO' G(o)u(0) doinds +

(5.8)

+ 2 sup f Ixn(ut) - 1o G -_(Xn(u,s))u(s)dsl, 0 , r < t),

for every u e U, t e [0,t o ].

Indeed, Ix(ut) - xn(u,tfl 4 Ix(u,t) - yn(u,t)I + lyniurt) - xN(u,t)l. The

estimates (5.4) and (5.2) with G replaced by G-1 yield (5.8).

Example 3. Consider the bidimensional system L (x,y) - (u+y.cos x, X2-x3),

(x(O),y(o)) - (0,0). Its third order approximation is

x(u,t) - it u(s)d. + C,(ut) y(ut,) - it ( Io" u(wdo>)2  . 2+ e(u,t)

- Theorem 2 yields the bounds

le (u,t)I < C It I j0 u(Oid013ds + 2 it 1o 2 uo )d o d a2d (5.9)

0 0 J. u(d d 2-(5O9

-10-
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for i - 1, 2, u e U and t sufficiently small. From (5.9) we see that

ICu,t, - oi ( " a)da)2 do, hen.e, for small t, x(.Ut) > 0 and the system is

not locally controllable. For any fixed to > 0, consider the control u,(t) - co It.

As I + -, 1U1 tends to (2 t/) 4, while Jo i u1
(c)(40)2 d tends to

L 0,t1 4 4
zero. Bounds of the type I £i(u't)I 4 Ct or lei(ut)I 4 C lul4 are therefnri too

weak for proving non-controllability even in this simple case.

16 Directional Estimates.

To obtain more precise bounds on the error in the Taylor expansion of (1.2), in this

section we split Rd into a sum of orthogonal subspaces V and estimate the size of the
p

error separately on each VJ Given the control system (1.2), define an increasing
p

sequence of subspaces Sp 2 Id recursively by setting i) go - (0), ii) Bp is the

smallest subspace of Rd such that for all i - 1, ..., m and k - 0, ..., p one has

Dk gt(o)(zl,...,zk) e Sp for every k-tuple wel'...,k) ith XI e sj, and

Jl + J2 + "' + Jk 4 p. In particular, S1 is the smallest subepace that contains the

m vectors qi(o) and is invariant under the linear operators Vgi(o) i - 1, ..., a).

Now choose any p ) 1. For 1 4 p < p define V as the orthogonal complement of 8
p -

in Sp, Let V be the orthogonal complement of S in 2d. Finally, denote by vi

the orthogonal projection R a V . With this notation, we have

Theorem 2. Let u(.) + x(u,*) be the input-output map generated by (1.2) and let

u(.) + xn(U,) be its n-th order Taylor approximation about the null control. If

p e a1,...,p} end n ) p, then there exist Coo to > 0 such that

IT (x(u,t) - xn(u,t))I, ot" it J, (o)u()dalpd. (6.1)

for all t e [0,to), u e U.

Proof. Let Yn be the solution of (5.3). By Leoaw 2, the difference yn(u,t) - x(u,t)

satistifies a bound of the form (6.1) for any p = 1, ..., . Therefore we only need to

show that

7-11-
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t

1Wp(yn(u,t) - xn(Ut))I C0 tn-p J Ix(us)1Pd,

where

x1 (us) " f G(o)u(o)do
0

gives the first order Taylor approximation to the trajectory x(-,-). In 13, xn  was

proven to be a finite sum of integral monomials occuring within the first n Picard

iterates for the system (5.3). To keep track of its size, to each one of the above

integromials we attach an integer Y(u) as follows: If p = xV, defined at (6.3).

set Y(U) - 1. If

U(U,t) - It 1-j- G(k)(o)(u1 (u,s),...,k(us))u(s)ds, (6.4)

set y(u) - y(u ) + ... + Y(Vk We stress that this definition refers exclusively to

the integromials arising via Picard iterations for the particular system (5.3) presently

considered. Comparing the definitions of y and of the subspaces Sp, it is clear that

U(ut) e SY(U) for all t ) 0, u e U. Also notice that if the order of

0 is v > 1, then J(u) ( v - 1. A basic estimate on the size of integral monomials is

now given.

Lemma 3. Let 4 be an integral monomial of order V > I occurrino in some Picard

iterate for (5.3), and let y(p) - p. Then there exists a constant C such that

1U(u't)1 < C tV - p '  It Ix ,u's, Pd. (6.5)
0 1

for all u e u, 0 c t 4 1.

Proof. Notice first that for the intgroial x 1 (.,) we have v p - 1. For all

others, v > 1. Moreover, the only integral monomials for which v = p + I have the

form

f(ut) - it 'LG(p (° ) (x (us))[P]u(s) ds (6.6)

and clearly satisfy an estimate of the type (6.5). The general case will be proved by

induction on v, assuming v ) p + 2. If v is given by (6.4), let Vi have order

v < v and let Y(ui) pi (i - 1,...,k). The inductive hypothesis implies that either

x1 or

1  
ii(us)I 4 C ZV a - 1 J Ix,(u,o) p i do (S.7)

-12-
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for Some constant Cj and all u e UP 0 - t 4 1.

Using the symetry of G(k)(o), we can reorder the ui and assume that (6.4) has the form

iiut) - it I. G W(o)(l (u,•), ... (U,.), x(u,S), ... X (u,))u(s)ds (6.8)
o ;7 1 h II

for Some 0 ( h 4 k, with each V (1 4 1 ( h) having order v 1 I. The order of U in

(6.8) is then v - I v 1 + Y +V h + k - h, while p - y(m) p + --- ph + k - h. Zn

ehe following, We aet q - P ... * ph - p - k + h, If q - 0, then R has the form

(6.6) and the estimate (6.5) is immediate. If q > 0, the inductive hypothesis and

Holder's inequality imply

lu(u.t)l < C t Ix (u,s)I fh n [C4. Jo 1x1 (uO)t do] da

Sh pi/q (q-Pl)/q]

I < C ]~
t 

•
(v

I
) 'Ip

-
h  

I YT0 d(o I1u o)J )  "8de

i-I

0

trivial cI v-:-2 I,:.s);lk-h( f Ix(u.:)I'd) do (.9
0

where the onatants L, C , Ci are independent of u and t. If h - k, (6.5) is a

trivial consequence of (6.9). If h C k, on* recovers again (6.5) from (6.9) integjrating

by pert.s and using 4der's inequality:

ftI(u,tlI ( c t"p-
2 
( f

t 
Ix I(u.aIk-hd.)(ott. Iu,sllqdsl

4 IC tV -p"1  it I s (u ,e)l k h~q aa.

Returning to the proof of Theorem 2, for any control u e U and any constants

C, T ) 0, detino ),u(CT) as the set of all maps a e Q(O,m), Y R ) uch that

IT (S~t) - NAU,t)) C * t np Ix (u,.)IPd (6.,0)p n0 1

for all t e [0,1f, p - 1, ..., p. We claim that Yn (u,.) e Ju(Cot o ) for some COP

to > 0 and all u e U.

Loma 4. There exist constants C., to  such that, for every u e U, the map * defined

Sby 
i

-U (z)(t) 0 t Gn-1(z(s))u(s)ds

maps )U (C0 to) into itself.

Proof. Given u e U, - C([o,) Rd), for p- I .... p set

-13-
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wp (t) - it (z(t) - Xn ut)). We then have

IVp(Xn)(Ut) - ((Zt) I 4 IWp(Xn(U,t) - ft Gn. (xn(us))u(a)da)I

+ Is ( G (x Cu, s ) )u(s)ds - G (x (u.) + IP w (s))u(s)ds)I
p 0 f- 0 n P

IA(u,t)I + IB(ut)I. (6.11)

Notice that A(u,t) is a finite sum of integral monomials which, by Corollary 1 in 12,

have order > n. if u is one of such monomials, then either y(u) ) p or

w U(ut)) - 0. By Lemma 3, there exists a constant C1 > 0 such that

W (A(u,t))l 4 C 1 tn-p JtIx (us)IPdo (6.12)

for all u e U, 0 4 t 4 1, p = 1, ... , . Take Co - 2C1 . To determine a suitable to,

observe that P(u,t) can be written as a finite sum of terms of the type

AIut) - ft Cs), ... , w (C), (u,s), ... (Us),
) o T 0 p P, t+1 '

x1(Us), ... , X1 (u,s))u(o)de,

where k e t1...,n-1}, 2 ) I and the integromials +1' "'*' Ut+h have order > 1.

For i - I + 1, ... , t + h, let p . Y(I) "  
Observe that the order of in then at

least Pi + 1. If z e I u(Co, T) we thus have the inequalities

IMi(u.S)I 4 C JO Ix1(uc I) da,

Iw (u's)I e. C asn - p i l y P

for a suitable constant C and a smin {T, I). The definition of SP implies that

either "" h + k - t - h p, or *(A(u,t)) - 0. The same arguments used in

the proof of lama 3 now yield constants C2, t 2 > 0 such that

W P(A(u,t)) -C c 2  t 0 
I 

X l(U,s)IPd ,  (6.13)

-14-



for 0 c t < t 2 P u e U.

Therefore, there exist C 3, t3 > 0 such that

11 (u t))l -C 3 t 
n 'p + 1 

ft lx (u,s)lPds (6.14)

for all u e U, p - 1, ... , j, t e [0,t 3 ]. Comparing (6.11) with (6.12) and (6.14), we

see that LeT a 4 holds with to m min 0, t3, CLC;
1 ).

The conclusion of the proof of Theorem 2 is now straightforward. For all u e U,

Yn(u,
o
) is the unique fixed point of #u" By Lemma 4, yn(u,-) e Lu he

(6.2) follows from (6.10).

With the same notation of Theorem 2 we have

Corollary 3. If p > 1, n 4 p, then there exist CO, to > 0 such that

I w(x(u,t) - xn(u't))l - I W (x(u,t))l 4 C JIj 12 G(o)u(O)dOjp d
s (6.15)

for all u e u, t e 10,to|, p - 1, ... ,

Indeed, x. is a sum of integral nonomials v. having order 4 n. Nence

y(U i )  p and wp(i(u,t)) 2 0. This implies wp(xn(ut)) - 0. Setting n -p

Theorem 2 yields the bound (6.15).

Example 4. consider an R the system 2 ' x2' x3) - (u co x1 - x2 - x3,

2 3
tg(x 1 - x3 ), sin

2 
x1 - x2  xj), x(0) - a e a3. A third order expansion yields

x (u,t) - itu(S)ds _ Jt 1 01l 02 u(c )do do2~ do+C *

I xu,t) - it 1lu(0.)dlo do + e ut),

x (ut) - i to u(o)d) 2 s d + C (ut).

For this system, 8 1 -V 1 -

-( 92f 
0 )  , -

3 V2 "(,0,E3) R3 • R). By Theorem 2 there exist

C, T > 0 such that

-15-



I C3(u,t)I < C t o I j u(o)do I2ds

for all u e U, t e [O,T]. Hence, for small t, x3 (u,t) ) 0 and the system is not

locally controllable. An alternative pzoof of this could be obtained from the results in

[6].

$
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ABSTRACT (Continued)
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;(t) " (Tngi)(x(t)) ui(t), x(o) - 0, discarding the terms of order
imI

> n. For z e Rd, directional error bounds of the form
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n i1i

can be given. These estimates improve those supplied by the classical

Taylor's theorem and yield results concerning local non-controllability.
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